Gas Phase Stability of Protein-Protein Complexes
نویسندگان
چکیده
ESI-MS has been used extensively over the last decade to study protein-protein interactions [1]. Serine proteases and their inhibitors provide a valuable model for the study of protein complexes as a great deal is known about solution binding and about X-ray crystal structures of such systems. It is generally accepted that hydrophobic interactions are weakened in the gas phase and that hydrophilic interactions are strengthened. We have recently shown that a series of complexes of chymotrypsin and eglin c mutants containing variation in hydrophobic residues showed no difference in collision induced dissociation curves even though solution binding constants ranged from weak (μM) to strong (pM). Solution binding constants could only be correlated with results in MS, and not MS/MS, mode [2]. Here, we further that study by examining the binding of a select group of these mutants to the serine protease subtilisin Carlsberg. Eglin c has similar inhibition constants for subtilisin Carlsberg and chymotrypsin, but shows vastly different dissociation in the gas phase.
منابع مشابه
Energy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations
The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...
متن کاملMass spectrometry of protein-ligand complexes: enhanced gas-phase stability of ribonuclease-nucleotide complexes.
Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS). Ligand binding stoichiometry can be determined easily by the ESI-MS method. The ability to detect noncovalent protein-ligand complexes depends, however, on the stability of the complexes in the gas-phase environment. Solution binding affinities may or may not be accurate predictors o...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملA theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures
A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...
متن کاملDeterminants of gas-phase disassembly behavior in homodimeric protein complexes with related yet divergent structures.
The overall structure of a protein-protein complex reflects an intricate arrangement of noncovalent interactions. Whereas intramolecular interactions confer secondary and tertiary structure to individual subunits, intermolecular interactions lead to quaternary structure--the ordered aggregation of separate polypeptide chains into multisubunit assemblies. The specific ensemble of noncovalent con...
متن کاملA New Thermodynamic Approach for Protein Partitioning in Reverse Micellar Solution
Reverse micellar systems are nanofluids with unique properties that make them attractive in high selectivity separation processes, especially for biological compounds. Understanding the phase behavior and thermodynamic properties of these nanosystems is the first step in process design. Separation of components by these nanosystems is performed upon contact of aqueous and reverse micellar phase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003